The Power Method for Eigenvectors
ثبت نشده
چکیده
Power Method We now describe the power method for computing the dominant eigenpair. Its extension to the inverse power method is practical for finding any eigenvalue provided that a good initial approximation is known. Some schemes for finding eigenvalues use other methods that converge fast, but have limited precision. The inverse power method is then invoked to refine the numerical values and gain full precision. To discuss the situation, we will need the following definitions.
منابع مشابه
EIGENVECTORS OF COVARIANCE MATRIX FOR OPTIMAL DESIGN OF STEEL FRAMES
In this paper, the discrete method of eigenvectors of covariance matrix has been used to weight minimization of steel frame structures. Eigenvectors of Covariance Matrix (ECM) algorithm is a robust and iterative method for solving optimization problems and is inspired by the CMA-ES method. Both of these methods use covariance matrix in the optimization process, but the covariance matrix calcula...
متن کاملCenter of Mass Estimation of Simple Shaped Magnetic Bodies Using Eigenvectors of Computed Magnetic Gradient Tensor
Computed Magnetic Gradient Tensor (CMGT) includes the first derivatives of three components of magnetic field of a body. At the eigenvector analysis of Gravity Gradient Tensors (GGT) for a line of poles and point pole, the eigenvectors of the largest eigenvalues (first eigenvectors) point precisely toward the Center of Mass (COM) of a body. However, due to the nature of the magnetic field, it i...
متن کاملOn Variations of Power Iteration
The power iteration is a classical method for computing the eigenvector associated with the largest eigenvalue of a matrix. The subspace iteration is an extension of the power iteration where the subspace spanned by n largest eigenvectors of a matrix, is determined. The natural power iteration is an exemplary instance of the subspace iteration, providing a general framework for many principal s...
متن کاملIterative Methods for Computing Eigenvalues and Eigenvectors
We examine some numerical iterative methods for computing the eigenvalues and eigenvectors of real matrices. The five methods examined here range from the simple power iteration method to the more complicated QR iteration method. The derivations, procedure, and advantages of each method are briefly discussed.
متن کاملSelection of Eigenvectors for Face Recognition
Face recognition has advantages over other biometric methods. Principal Component Analysis (PCA) has been widely used for the face recognition algorithm. PCA has limitations such as poor discriminatory power and large computational load. Due to these limitations of the existing PCA based approach, we used a method of applying PCA on wavelet subband of the face image and two methods are proposed...
متن کاملStrict localization of eigenvectors and eigenvalues
Determination of the eigenvalues and eigenvectors of a matrix is important in many areas of science, for example in web ranking [8, 15], computer graphics and visualization [24], quantum mechanics [5], statistics [12, 20], medicine, communications, construction vibration analysis [3, 23]. One of the most important numerical methods designed to calculate the eigenvalues and eigenvectors of matri...
متن کامل